
Malattie alimentari da batteri del gen. Vibrio parte Seconda: Colera

Docente:Elena Rocchegiani e.rocchegiani@izsum.it

Di cosa parleremo

- Il Colera Introduzione ed etimologia
- Patogenesi
 - Trasmissione
 - Fattori di viruenza
 - Dose infettante
 - Meccanismo d'azione della CTX
- Clinica
- Un po' di Storia
- Epidemiologia
- Vibrioni e biofilm
- Diagnosi
- Terapia
- Profilassi

Dove siamo arrivati....

Batteri patogeni

Salmonella spp.

Clostridium botulinum Staphylococcus aureus

Campylobacter jejuni e coli

Yersinia enterocolitica

Yersinia pseudotuberculosis

Listeria monocytopenes

Vibrio cholerae O1

Vibrio cholerae non-O1

Vibrio parahaemolyticus

Altri vibrioni alofili correlati

Vibrio vulnificus

Clostridium perfringens

Bacillus cereus

Aeromonas hydrophila e altre spp.

Plesiomonas shigelloides

* Shigella spp.

Streptococcus

Vari germi enterici patogeni occasionali

Gruppo degli Escherichia Coli Enterovirulenti (EEC)

Escherichia coli - enterotossigeni (ETEC)

Escherichia coli - enteropatogeni (EPEC)

Escherichia coli O157:H7 enteroemorragici (EHEC)

Escherichia coli - enteroinvasivi (EIEC)

Protozoi e altri parassiti

Cyclospora cayetanensis Anisakis sp. e vermi correlati Diphyllobothrium spp.

Nanophyetus spp.

Eustrongylides sp.

Acanthamoeba e altre amebe

Ascaris lumbricoides

Trichuris trichiura

Giardia lamblia

Entamoeba histolytica

Cryptosporidium parvum

Virus

Epatite A virus

Epatite E virus

Rotavirus

Norwalk virus (gruppo)

Altri agenti virali (Polio-, Echo- Coxsachie-,

Corona-, Astro- e Parvovirus)

Tossine naturali

Ciguatera

Tossine dei molluschi (PSP, DSP, NSP, ASP)

Veleni da sgombridi

Tetrodotossine (Pesce palla)

Tossine fungine

Aflatossine

Alcaloidi pirrolizidine

Fitoemoagglutinine (Red kidney bean

poisoning)

Tossine del miele

Altri agenti patogeni

Prioni (BSE)

Colèra

[dal lat. cholĕra, gr. χολέρα, femm.],

colèra dal gr. CHOLÈRA da CHÒLIX CHOLÀS intestino oppure da CHOLÈ bile (Cagione del profluvio di bile o di materi simili per la bocca o per la via inferiore (v. Colon), cui taluno aggiunge RÈO scorro non reputando RA semplice e muta desi nenza (cfr. Collera). — Morbo epidemico venuto dall'Asia, che cagiona improvvi samente vomiti e copiose deiezioni alvine de spesso seguito da morte.

Deriv. Colèrica: Colerino: Coleroso.

COLLERA: Secondo la medicina ippocratica, l'abbondanza di bile gialla - uno dei quattro fluidi fondamentali del corpo umano - caratterizzava la persona di temperamento collerico, che naturalmente tenderebbe a non riflettere, reagendo in maniera impetuosa anche agli stimoli più delicati. Una reazione, quindi, non di testa né di cuore, ma di pancia. Il colera temine già usato da Ippocrate, in quanto grave infezione intestinale, etimologicamente nasce dalla medesima radice: gli squilibri addominali si credevano effetto di squilibri biliari.

Introduzione

- Il colera è una malattia a trasmissione oro-fecale che può essere contratta in seguito all'ingestione di acqua o alimenti contaminati da ceppi tossigeni di Vibrio cholerae O1 e O139.
- Gli alimenti più a rischio per la trasmissione della malattia sono quelli crudi o poco cotti e, in particolare, i **molluschi bivalvi**.
- Anche altri alimenti possono comunque fungere da veicolo.
- Il microrganismo può vivere anche in ambienti naturali, come i **fiumi salmastri** e le zone costiere: per questo il rischio di contrarre l'infezione per l'ingestione di molluschi è elevato.
- Le scarse condizioni igienico-sanitarie di alcuni Paesi e la cattiva gestione degli impianti fognari e dell'acqua potabile sono le principali cause di epidemie di colera.

Associazione tra alcune sindromi cliniche e Vibrio

Specie Vibrio	Sito di infezione						
	Tratto gastro-intestinale	Ferita	Orecchio	Setticemia primaria	Batteriemia	Polmone	Mening
V. cholerae O1/O139	++	(+)	?	?	?	?	?
V. cholerae non-O1 / non-O139	++	+	+	(+)	(+)	?	(+)
V. parahaemolyticus	++	+	(+)	?	(+)	(+)	(+)
V. vulnificus	+	++	?	++	+	(+)	(+)
V. fluvialis	++	?	?	?	?	?	?
V. alginolyticus	?	++	+	?	(+)	?	?
V. damsela	?	++	?	?	?	?	?
V. furnissii	(+)	?	?	?	?	?	?
V. hollisae	++	?	?	(+)	?	?	?
V. mimicus	++	+	+	`?	?	?	?
V. metschnikovii	(+)	?	?	(+)	?	?	?
V. cincinnatiensis	`?´	?	?	`?	(+)	?	(+)
V. carchariae	?	++	?	?	`?´	?	`?´

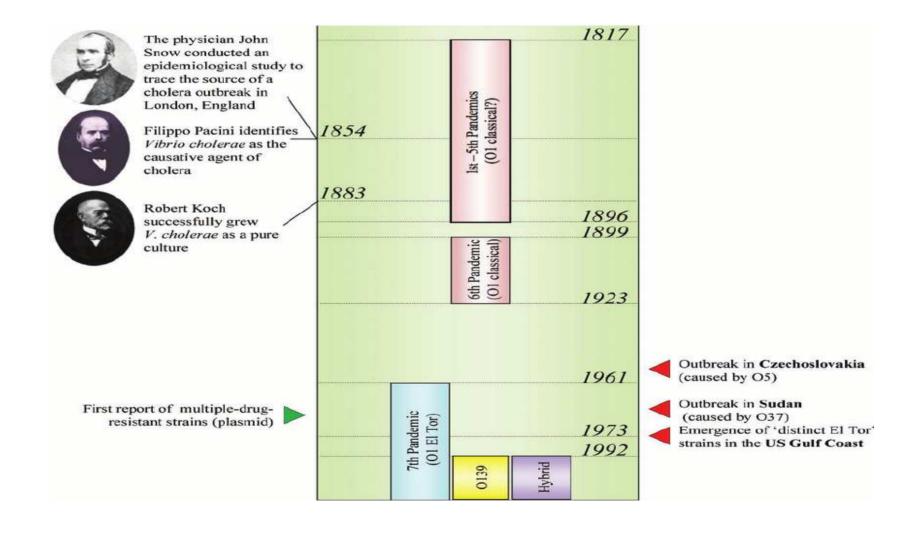
⁺⁺ più comune sito di infezione; + altri siti di infezione; (+) raro sito di infezione; ? da stabilire. Modificata da [11, 12].

Vibrio spp. (Family Vibrionaceae) Associated with Human Disease

Species	Source of Infection	Clinical Disease
V. cholerae	Water, food	Gastroenteritis
V. parahaemolyticus	Shellfish, seawater	Gastroenteritis, wound infection, bacteremia
V. vulnificus	Shellfish, seawater	Bacteremia, wound infection, cellulitis
V. alginolyticus	Seawater	Wound infection, external otitis
V. hollisae	Shellfish	Gastroenteritis, wound infection, bacteremia
V. fluvialis	Seafood	Gastroenteritis, wound infection, bacteremia
V. damsela	Seawater	Wound infection
V. metschnikovii	Unknown	Bacteremia
V. mimicus	Fresh water	Gastroenteritis, wound infection, bacteremia
V. furnissii*	Seawater	Gastroenteritis
V. cincinnatiensis*	Unknown	Bacteremia, meningitis
V. carchariae*	Seawater	Wound (shark bite)

Caratteristiche del gen. Vibrio

- Il genere *Vibrio* comprende microrganismi **Gram- negativi**, di forma leggermente ricurva e **mobili** per la
 presenza di **un flagello polare** che risulta avvolto da
 un involucro esterno continuo con la membrana
 esterna della parete cellulare.
- Aerobi –anaerobi facoltativi
- Non sporigeni
- **ossidasi positivi** (tranne il *Vibrio metschnikovii*)
- fermentano il glucosio
- **organismi alofili** poiché la loro crescita viene stimolata dalla presenza di NaCl (indispensabile per*Vibrio vulnificus, Vibrio parahaemolyticus*).
- Possono infatti essere classificati come alofili o non alofili, in base alla richiesta di NaCl per la crescita .


Classificazione dei vibrioni in base alla richiesta di NaCl

Salinità	V. cholerae	V. mimicus	V.vulnificus	V.parahaemolyticus	V.alginolyticus
0%	+	+	-	-	-
3%	+	+	+	+	+
6%	-	-	+	+	+
8%	-	-	-	+	+
10%	-	-	-	-	+

Test biochimici caratteristici delle specie patogene

Test	Gru I	ippo (*)	Gruppo II	Gruppo III		Gruppo IV			Gruppo V	
	V. cholerae	V. mimicus	V. metschn ikovii	V. hollisae	V. damsela	V. fluvialis	V. furnissii	V. algino lyticus	V. parahae molyticus	V. vulnificus
0% NaCl	+	+		_	-	-	-	_	-	_
1% NaCl	+	+	+	+	+	+	+	+	+	+
Ossidasi	+	+		+	+	+	+	+	+	+
Nitrati	+	+	-		+	+	+	+	+	+
Arginina	-	-		-	+	+	+	-		(-)
Lisina	+	+	-	-	-	-	-	+	+	+
Ornitina	. +	+	-	-	-	-	-		+	

Discovery

Discovery

- Filippo Pacini (1812-1883)
 - 1854: Cholera reaches Florence,
 Italy. Pacini discovers causative
 agent
 - Publishes "Microscopical
 Observations and Pathological
 Deductions on Cholera"
 - 1965: Bacterium named Vibrio cholerae Pacini 1854
- Robert Koch (1843-1910)
- 1884: Rediscovers Vibrio cholerae


Un organismo simile ad un vibrione fu descritto per la prima volta come il patogeno del colera già dal 1854 da Filippo Pacini anche se *Vibrio cholerae* fu isolato 30 anni dopo da Robert Kock nel 1884

Vibrio cholerae

- Vibrio cholerae è un microrganismo Gram-negativo, ossidasi-positivo, asporigeno, aerobio- anaerobio facoltativo, forma bastoncellare ricurva, provvisto di un singolo flagello, ad un polo della cellula, in grado di conferirgli motilità
- E' in grado di fermentare alcuni zuccheri, come maltosio, saccarosio, destrosio e mannitolo, producendo acidi;
- debolmente alofilo e, a livello ambientale, ha una variabile capacità di resistenza a seconda della temperatura, umidità e presenza di sostanze organiche

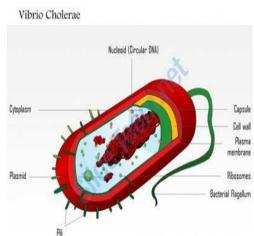
Vibrio cholerae condizioni di crescita


Sopravvive:

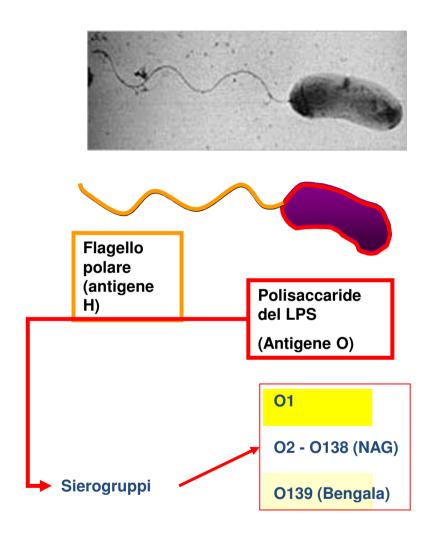
- 7 a 13 giorni nell'acqua potabile
- 28 giorni negli alimenti in funzione del pH e dell'a_w
- 14 giorni nei molluschi bivalvi a temperatura di refrigerazione.

Parametri	Optimum	Intervallo
Temperatura (C°)	37	10-43
рН	7,6	5,0-9,6
a _w	0,984	0,97-0,998
NaCl%	0,5	0,1-4

Vive nelle acque marine in vicinanza delle coste nei mesi estivi e solo raramente in quelli invernali durante i quali sembra si localizzi nei sedimenti per risalire nelle acque superficiali quando la temperatura dell'acqua è favorevole (sopra i 14°C circa). Qui *Vibrio cholerae* si insedia nello zooplancton e nei materiali ricchi di chitina dove si moltiplica: questa colonizzazione si verifica con maggiore efficacia nelle condizioni di salinità tipiche degli **estuari.**

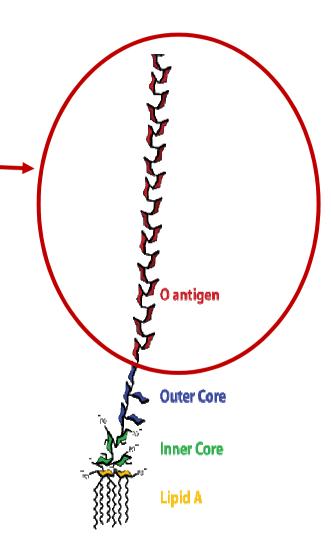

Condizioni di salinità tipiche degli estuari

"Stato dormiente" in simbiosi con zooplancton (piccoli crostacei) non coltivabile ma dimostrabile con IFA

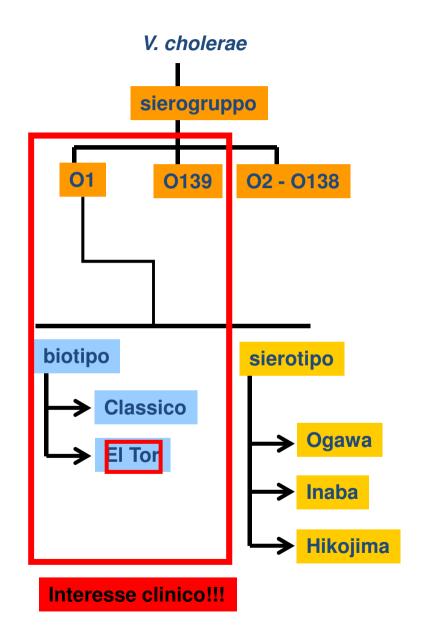

General Characteristics of Vibrio

- Similarities to Enterobacteriaceae
 - Gram-negative
 - Facultative anaerobes
 - Fermentative bacilli
- Differences from Enterobacteriaceae
 - Polar flagella
 - Oxidase positive

Caratteri antigeni del V. cholerae


- Ag Ciliare H → termolabile, non specifico
- Ag Somatico O → termostabile specifico
- in base all'antigene "O" è classificato in 139 gruppi sierologici (sierogruppi)
- da V. cholerae O1 a V. cholerae O139
- O1 e O139: possono produrre tossina colerica e causare pandemie ed epidemie di colera.

Durante episodi epidemici sono stati isolati solo ceppi TOSSIGENICI che appartengono ai sierogruppi O1 e O139 (colerigeni)


Ricordiamo?

- Il **lipopolisaccaride** (LPS) è uno dei componenti della membrana cellulare esterna dei batteri Gramnegativi
- L'antigene O (O-Specific Chain), dettoanche catena laterale, è costituito da una ripetizione di 20-50 unità che compongono 4-8 zuccheri comuni (glucosio, galattosio, mannosio) o specifici della specie. Rappresenta la porzione più esterna, e quindi quella esposta al sistema immunitario. Oltre ad essere diverso nelle diverse specie può anche essere diverso all'interno della specie, caratterizzando quindi i diversi ceppi.

Classificazione del Vibrio cholerae

- All'interno del gruppo sierologico
 O1 vengono distinti 2 biotipi
 (caratteristiche fenotipiche) e 3
 sierotipi (caratteri antigenici)
- Vibrio cholerae Nuovo Sierogruppo
 O-139 Bengal (probabilmente derivato da El tor)
- 02 -0138 Non-cholera vibrio (NCV) or non-agglutinating vibrios (NAG) or non-O1 vibrio cholerae)

I due biotipi di *V.cholerae*

- 1) V. cholerae O1 biotipo classico (colera asiatico, è il più diffuso) ritenuto responsabile delle prime sei pandemie verificatesi tra il 1817 ed il 1923.
- 2) V. cholerae O1 biotipo El Tor (isolato in un campo di quarantena "El Tor" nella penisola del Sinai in Arabia) ritenuto responsabile della settima pandemia che iniziò nel 1961

Caratteri biochimici V.cholerae

- Ossidasi +
- Catalasi +
- > Fermentano il glucosio
- Producono indolo

TEST	CLASSICAL CHOLERA	EL TOR CHOLERA
HAEMOLYSIS	NEGATIVE	POSITIVE
VOGES-PROSKAUER	NEGATIVE	POSITIVE
CHICK ERYTHROCYTE	NEGATIVE	POSITIVE
AGGLUTINATION	NEOATTE	1 0011112
POLYMYXIN B	POSITIVE	NEGATIVE
SENSITIVITY		
CROUD IV BUACE	DOSITIVE	NECATIVE
	POSITIVE	NEGATIVE
OUGUET TIERETT		
EL TOR PHAGE 5	NEGATIVE	POSITIVE
SUSCEPTIBILITY		1)
AGGLUTINATION POLYMYXIN B SENSITIVITY GROUP IV PHAGE SUSCEPTIBILITY EL TOR PHAGE 5	POSITIVE	NEGATIVE NEGATIVE

Difference between El Tor & classical Vibrio cholerae

La patologia umana da vibrioni

	sierogruppo	biotipo	sierotipo	patologia
	01	Classico	Ogawa	
	(epidemie)	El Tor	Inaba	
Vibrio			Hikojma	_
cholerae	O139			colera
	(Bengala)			
	epidemie			
	O2-0138			
	Casi			
	sporadici			

PRINCIPALI ALTRI VIBRIONI DI INTERESSE MEDICO

Specie	Patologie sostenute
Vibrio parahaemolyticus	Gastroenteriti per ingestione
	cibi contaminati
Vibrio vulnificus	Infezione da ferite, setticemie

V.cholerae O1 classico vs V. cholerae O1 El Tor

- I vibrioni biotipo "El Tor" sono
 responsabili di epidemie in cui
 generalmente i casi gravi sono in minor
 numero mentre sono più frequenti le
 infezioni asintomatiche e lievi;
 persistono più a lungo nell'uomo per
 cui esistono casi di portatori cronici
 che non si verificano per il biotipo
 "classico";
- V.cholera O1"El Tor" risulta essere più resistente agli agenti chimici mostrando dunque maggiore capacità di sopravvivenza nell'ambiente naturale rispetto ai Vibrioni "Classici".

V. cholerae O1 classico

Casi/portatori 1:2-4

La maggioranza degli individui infettati non si ammala, ma libera batteri nell'ambiente (portatori)

V. cholerae O139

Malattia più severa Non pandemico V. cholerae O1 El Tor

Casi/portatori 1:30-100 incubazione più

lunga maggiore

sopravvivenza

nell'ambiente

Maggiori potenzialità

epidemiche

Vibrio cholerae non-O1

- Tutti i ceppi appartenenti a sierogruppi diversi da O1 sono associati con casi sporadici di gastroenteriti e lievi forme di malattie simili al colera
- Nota bene: alcune epidemie di colera tipico sono state attribuite a ceppi di una specie non O1: il Vibrio cholerae O139 (o Vibrio cholerae Bengala) che rappresenta un nuovo sierogruppo emergente.
- Dalla sua comparsa in India e Bangladesh nel 1992, infatti O139 si è diffuso molto rapidamente in altre regioni tanto da indurre alcuni ricercatori a suggerire la presenza di un'ottava pandemia in corso.

Trasmissione

- Senza la contaminazione di alimenti o acqua, il contagio diretto da persona a persona è molto raro in condizioni igienico-sanitarie normali.
- La carica batterica necessaria per la trasmissione dell'infezione è, infatti, superiore al milione: pertanto risulta molto difficile contagiare altri individui attraverso il semplice contatto.
- ► Trasmissione indiretta: acqua, alimenti, indumenti, insetti
- ►"5 F" → Fingers, Foods, Faeces, Flies, Fomites

Infectious dose: 10⁶ – 10⁸

Varies with vehicle of transmission

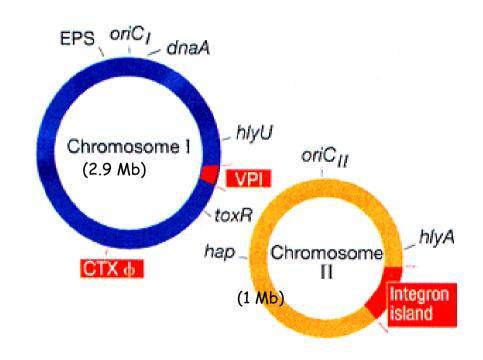
Gastric acidity

Incubation period

-1-3 days (½-5 days)

Patogenesi

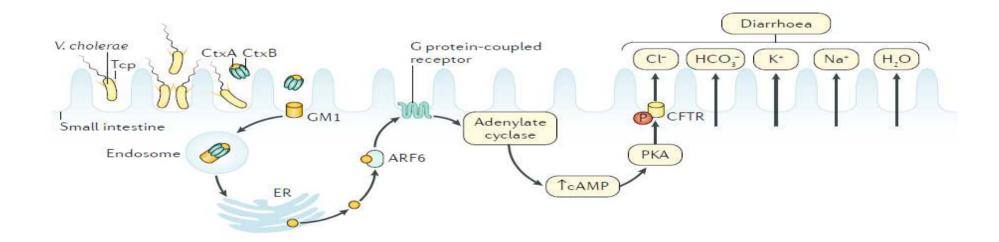
- Vibrio colerae 0-1 e O-139 causano malattia attraverso l'azione della esotossina colerica (CTX) → prodotta in fase replicativa
- V. cholerae non invade l'intestino, ma si attacca all'epitelio intestinale tramite i pili e l'azione della tossina rende le cellule altamente permeabili ai liquidi (si può perdere 1 litro d'acqua in 1 ora, fino a 20 litri in 1 giorno).


n.b.: Il microrganismo è poco invasivo. La patogenicità è legata alla tossina.

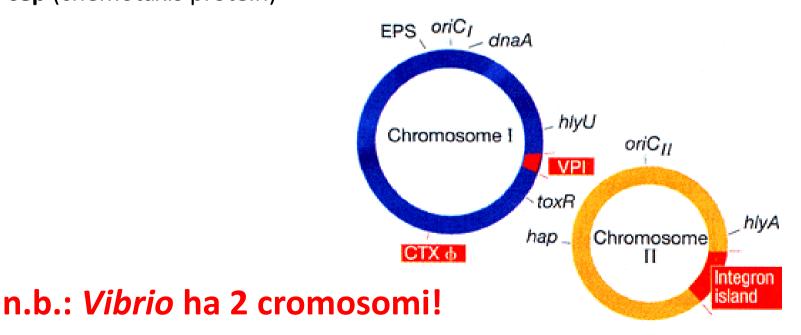
Vibrio cholerae: il genoma

Il genoma di *Vibrio* cholerae è composto da due cromosomi.

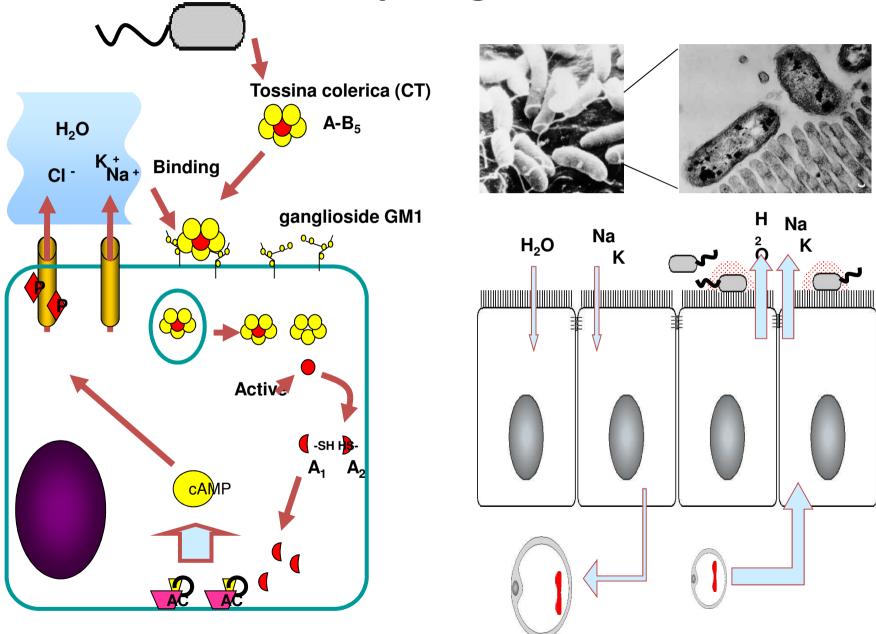
Il cromosoma più grande (cromosoma 1) contiene la maggior parte dei geni per le funzioni cellulari essenziali e per la virulenza.


La maggior parte dei geni sul cromosoma 2 sono a funzione sconosciuta

Isole di patogenicità, fagi ed integroni contribuiscono alla virulenza 1Mb = 1.000000 bp

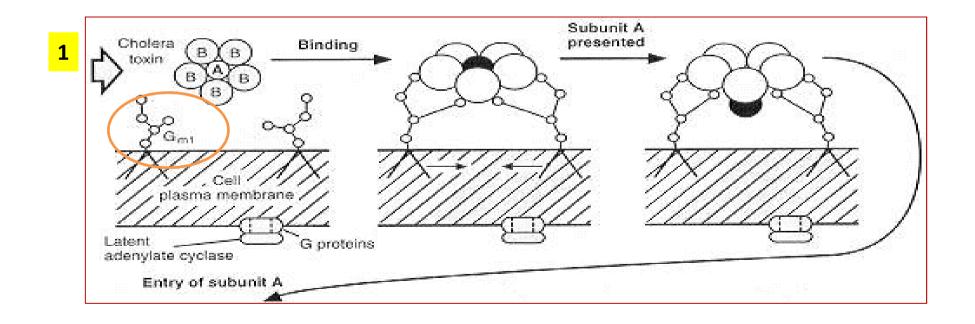

Enterotossina colerica CTX

- Da un punto di vista funzionale è un'esotossina binomiale di tipo A-B cioè una Proteina termolabile, pm 84-85.000 D, composta da due frazioni proteiche:
- a) Una **subunità** A (*active*) che svolge l'attività, suddivisa in A1 e A2(tenute insieme da un ponte disolfuro) → centrale, pm 27.000D
- b) Cinque **subunità B** (*binding*) periferiche, pm 11.500 D (5) carrier e legame con il recettore specifico di membrana dell'enterocita del tenue (GM₁-Ganglioside)



Patogenesi ed Immunità

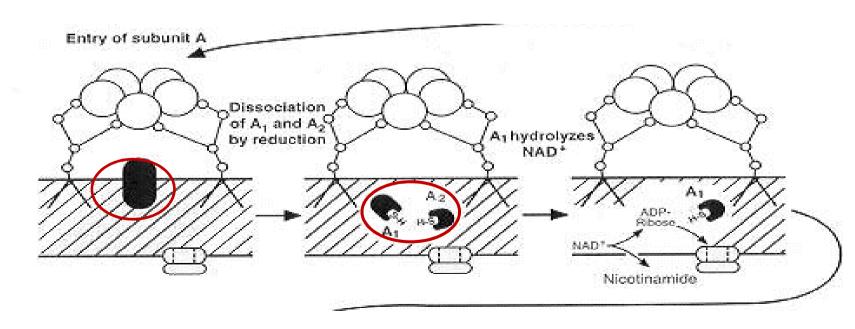
- Il fago si lega al tcp (toxin co-regulated pilus) e si integra nel genoma batterico.
- Il fago codifica anche per:
 - ace (tossina accesoria)
 - zot (tossina zonula occludens)
 - cep (chemotaxis protein)

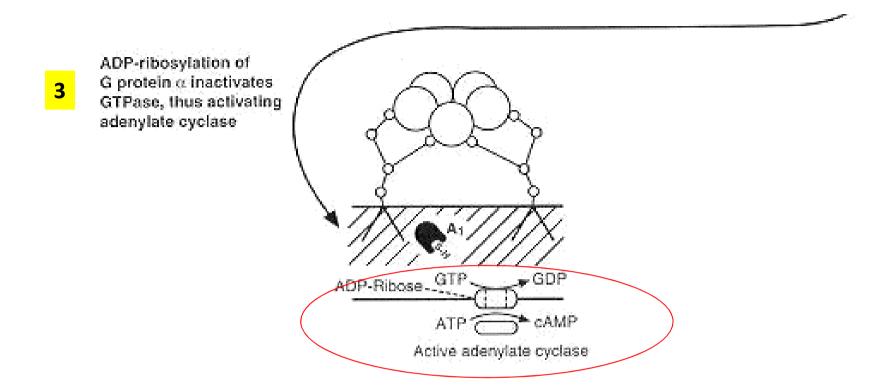

Azione patogena del *V. cholerae*

Patogenesi ed Immunità

Meccanismo d'azione della tossina colerica.

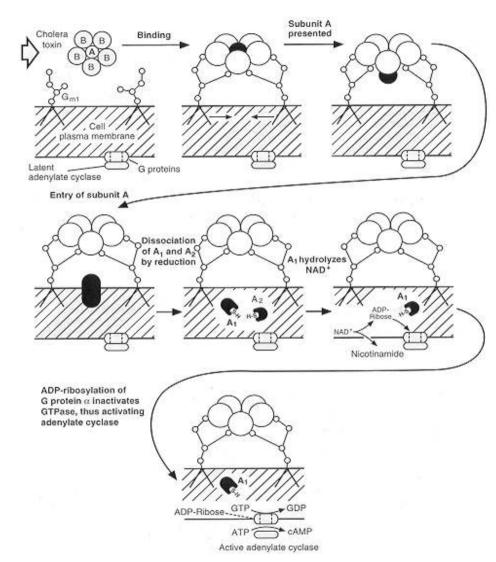
 La subunità B si lega al ganglioside GM1 delle cellule epiteliali permettendo la successiva internalizzazione nell'enterocita delle subunità A tramite un canale idrofobico.




Patogenesi ed immunità

• All'interno della cellula, la subunità si dissocia in A1 e A2.

2

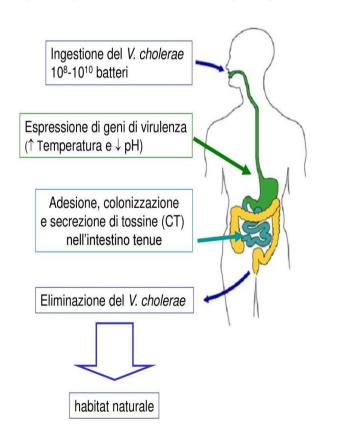

• A1 catalizza la ADP-ribosilazione sull'arginina di un complesso regolatorio (proteina G) che a sua volta attiva l'adenilato ciclasi presente sulle membrane cellulari a livello dell'epitelio intestinale.

L'attività GTPasica della proteina G è bloccata. Ne consegue iperproduzione di cAMP che stimola massiva secrezione di ioni sodio, potassio, bicarbonato con rilascio di acqua nel lumen, disidratazione e morte (in assenza trattamento). Il vibrio cholerae, a differenza degli enterobatteri e dei dissenterici (Salmonelle e Shighelle), **non attraversa l'epitelio intestinale**, la malattia sia causata dall'attività tossica posseduta dal germe.

La malattia insorge violentemente dopo 2-3 giorni di incubazione. I vibrioni colerici, una volta ingeriti, giungono nell'intestino tenue dove si moltiplicano e producono una tossina che, alterando la funzione delle cellule della parete intestinale, provoca un abnorme afflusso di liquidi e di sostanze in essi disciolte nel canale digerente: ciò spiega la diarrea profusa con cui si manifesta la malattia e la grave perdita di liquidi e di sali responsabile degli altri sintomi.

►A → attivazione Adenilato-ciclasi cellulare = ↑ cAMP = secrezione attiva di H2O ed elettroliti verso il lume intestinale (Fuga Intestinale)

Altri Fattori di virulenza


- a) Altre esotossine
 - ACE: enterotossina accessoria del colera, aumenta la secrezione di liquidi
 - ZOT: tossina della zonula occludens, aumenta la permeabilità intestinale
- b) Adesine: pilo co-regolato con la tossina (gene tcp):
 - media l'adesione sulla mucosa intestinale del pilo recettore per il fago CTXf (sito di legame del batteriofago che viene internalizzato e integrato nel cromosoma)
- c) produzione di enzimi: proteasi (mucinasi agiscono sulle IgAs e sul muco)
- d) proteina chemotattica (gene cep): fattore di adesione
- e) flagelli: movimento
- f) siderofori: sequestro del ferro
- g) neuraminidasi: modifica la superficie cellulare aumentando il sito di legame GM1 per la tossina colerica.
- h) Altri fattori
 - acf: fattori di colonizzazione accessori
 - hap: gene per l'emoagglutinazione/proteasi

Riassumendo l'azione patogena del *V. cholerge*

- V. cholerae non invade
 l'intestino, ma si attacca
 all'epitelio intestinale tramite i
 pili e l'azione della tossina rende
 le cellule altamente permeabili ai
 liquidi (si può perdere 1 litro
 d'acqua in 1 ora, fino a 20 litri in
 1 giorno).
- L'epitelio intestinale è danneggiato ed i sintomi sono: dolore addominale, diarrea aquosa e vomito. Per la presenza di muco, le feci diarroiche vengono definite "ad acqua di riso".

Obiettivo:

replicare e persistere nell'habitat naturale (marino) dei batteri

Il colera: dose infettante

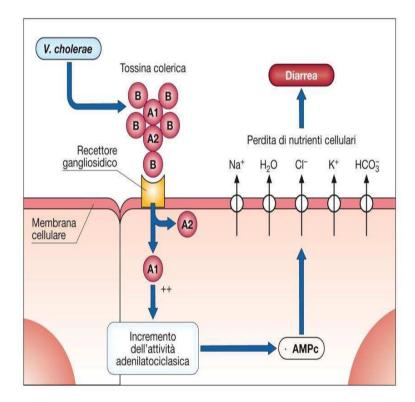
- Data la sensibilità del vibrione all'acidità gastrica la dose infettante è piuttosto alta (10⁸ ufc/g/ml)
- Dosi infettanti inferiori (10³-10⁵ ufc/g) in pazienti affetti da ipocloridria
- La simultanea ingestione di cibo fornisce una barriera protettiva contro l'acidità gastrica, permettendo alle cellule sopravvissute di colonizzare le pareti dell'intestino tenue.
- via primaria di trasmissione è quella oro-fecale attraverso acqua contaminata.
- I pazienti nella fase acuta della malattia riescono ad espellere fino a 10¹³ cellule al giorno
- le epidemie possono generare un inquinamento ambientale
- in tali casi, il cibo contaminato con l'acqua o direttamente con le feci può rappresentare un veicolo di trasmissione secondario.

Portatori sani

- Esistono portatori sani
- l'infezione è conseguente a:
 - consumo di crostacei, molluschi bivalvi crudi o poco cotti
 - Acqua contaminata
 - alimenti contaminati in genere
- In soggetti con acloridria o ipocloridria la carica infettante si riduce notevolmente da 10¹⁰ a 10³-10⁵
- Massima incidenza nei mesi caldi e in condizioni di scarsa igiene

Tossina colerica

Ingerito, Vibrio cholerae aderisce alla parete intestinale tramite il flagello polare per poi rilasciare la tossina colerica (CTX), a sua volta codificata dal fago CTXΦ, integrato nel genoma del vibrione.

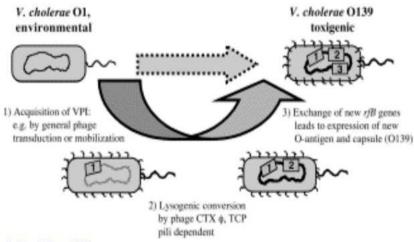

Il meccanismo d'azione di CTX mira ad alterare la concentrazione intracellulare di c-AMP portando ad uno squilibrio nelle secrezioni di sali.

Precisamente si blocca l'assorbimento di sodio e si promuove la secrezione di cloruri.

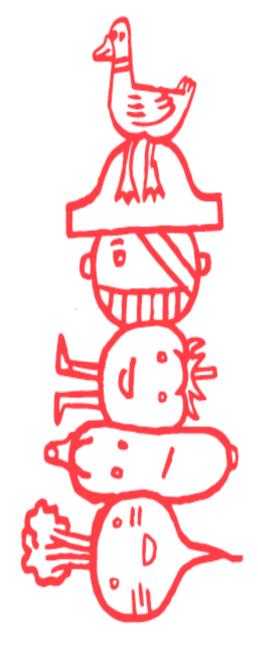
Lo sbilanciamento elettrolitico causa diarrea profusa grave con scariche intense (fino a perdere 1 litro di liquidi all'ora) e disidratazione, da cui debolezza e dolori muscolari per fuoriuscita di potassio.

Da un punto di vista funzionale CTX è un'**esotossina** binomiale di tipo A-B, si compone ovvero di due frazioni proteiche:

La subunità A (active) che svolge l'attività, suddivisa in A1 e A2, tenute insieme da un ponte disolfuro;
La subunità B (binding).

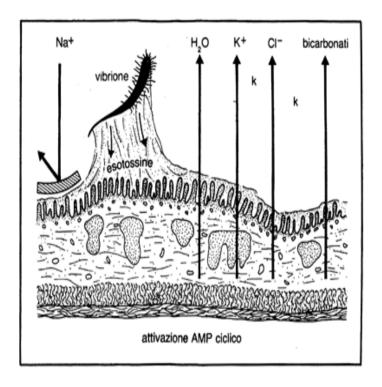


M. Clementi, G. Pozzi, G.M.Rossolini Principi di Microbiologia Medica


Copyright 2008 C.E.A. Casa Editr

I batteri del genere Vibrio presentano una elevata capacità di trasferimento genico orizzontale (HHGT), che può comportare una transizione dai ceppi ambientali non patogeni a quelli patogeni.

Horizontal Gene Transfer


- 1. Acquisition of VPI
- 2. lysogenic conversion by phage
- 3. exchange of genes leads to expression of O-antigen and capsule

nota bene

Patogenesi

- Penetrazione per OS → superamento barriera gastrica (cibo, acqua a digiuno) → duodeno, tenue → colonizzazione ed adesione mucosa → produzione esotossina → abnorme passaggio di acqua ed elettroliti nel lume intestinale senza modificazione del potere di assorbimento (Fuga Intestinale)
- "Feci" del coleroso → basse proteine (0.1 g%), soluzione quasi isotonica con plasma:

Perdita di H2O ed elettroliti → Disidratazione = ↓ massa sanguigna circolante, ↑ viscosità (Hct → 70%, protidemia → 14 g%) = shock, ipokaliemia e acidosi metabolica; insufficienza renale

➤ An. Patologica: Ø danno anatomico intestinale!

Clinica

- Incubazione: 1 5 gg (media 3 gg)
- Inizio brusco; non febbre
- <u>Diarrea</u> improvvisa, senza dolori addominali, senza tenesmo, subito numerose scariche → 50 – 100 / die
- "Feci": piccole quantità, 50 100 ml → liquame incolore, con fiocchetti biancastri (vibrioni conglutinati), odore indifferente, pH alcalino, assenza di GB e GR, ± muco, ad "acqua di riso", → 7 15 litri/die → in 4-5 gg > peso corporeo!
- <u>Vomito</u>: prima alimentare, poi come "feci"

Clinica

- <u>Segni di disidratazione acuta</u> e <u>alterazioni elettrolitiche</u> (↓K⁺, ↓Ca^{++,} ↓HCO₃-): sete, crampi muscolari, ipotermia cutanea, tachicardia, ipotensione, oligo-anuria, ...
- Aspetto Algido in 24h: cute fredda, sudore vischioso, "facies tipica" ⇒ occhio infossato, palpebre semichiuse, naso affilato, labbra secche, cianotiche, attaccate ai denti (faccia da mummia); lingua secca, fuliginosa; voce roca; addome a barca
- P.A.
 → shock; polso piccolo, filiforme, tachicardico
- <u>Sensorio integro</u> fino al decesso.

- La perdita di potassio può causare complicazioni cardiache e collasso cardiocircolatorio;
- Mortalità del 50-60% se non trattato;

Clinica

nel 60% dei casi in ~3gg → Exitus (shock irreversibile, acidosi metabolica, uremia da necrosi tubulare acuta secondaria alla prolungata ipotensione.

Nelle varie epidemie presenti anche numerosi casi di forme attenuate

Un po' di storia

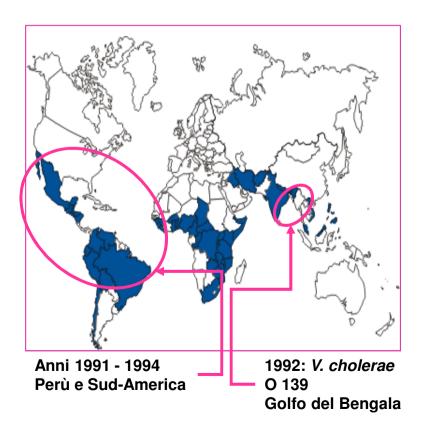
Il colera compare in Europa quando la peste scompare

Dal 1817 si sono verificate **7 pandemie**. Le prime sei determinate da *Vibrio cholerae* O1 sono durate ognuna da 5 a 25 anni.
nel 1961 la VII pandemia è causata da una variante di *V. cholerae* O1 detta El Tor.
L' Epidemia attuale causata da un

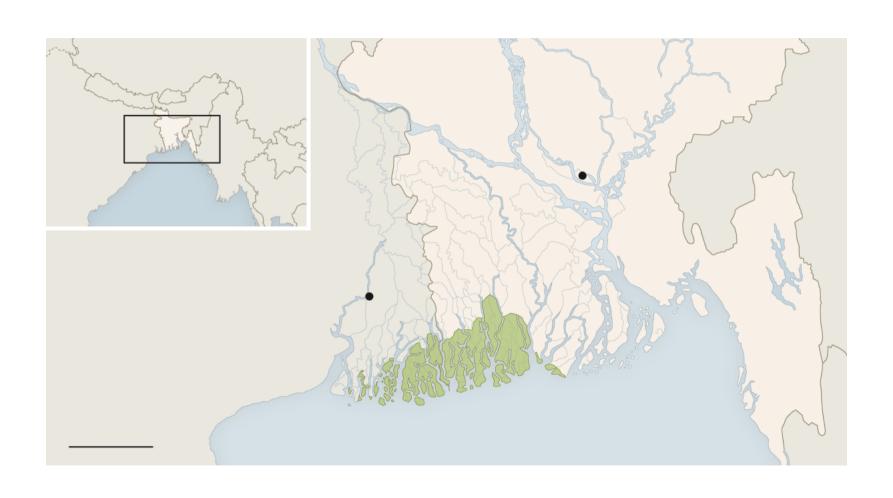
La comparsa di un nuovo sierotipo evidenza in modo chiaro la rapida evoluzione di *Vibrio cholerae* che grazie a questo nuovo sierotipo riesce ad evadere l'immunità presente nella popolazione.

sierotipo non O1 ma O139

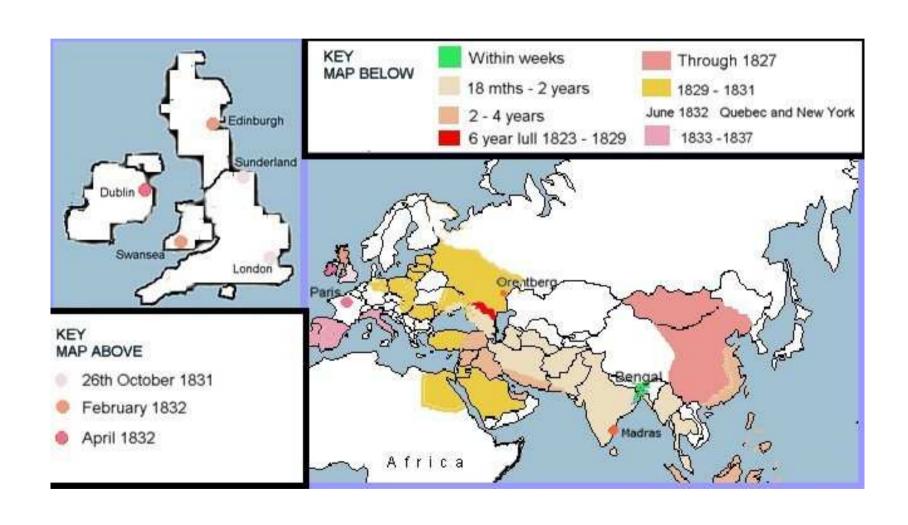
Le pandemie di colera

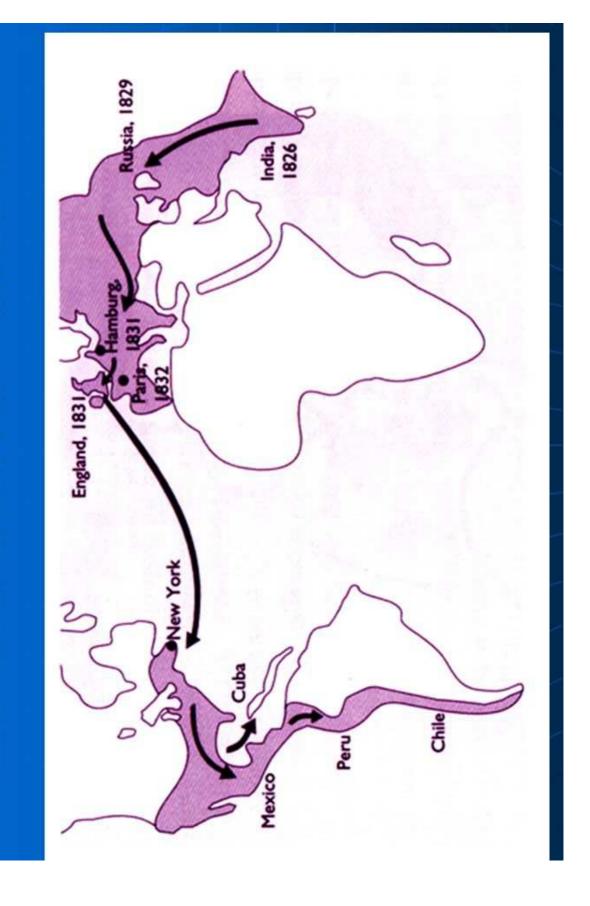

- Sierogruppo O1: colera epidemico (6 pandemie biotipo Classico - 1817/1923 e Settima Pandemia ElTor – 1961-1997)
 - La Settima Pandemia Inizia nel 1961 in Indonesia. Raggiunge Africa dell'est nel 1970 ed il Sud America nel 1991dove durerà fino al 1996
 - Coinvolge 21 paesi
 - Un totale di 1.000.000 di casi
 - Causa 12.000 morti (12%)
- Sierogruppo O139 (1992)

Aspetti epidemiologici del V. cholerae

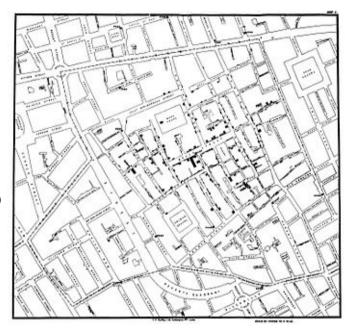

Per secoli endemico nel sub-continente Indiano

A partire dal 1817 il Colera si è diffuso in altri continenti (pandemie) → biotipo Classico


L'ultima pandemia (VII), attualmente in corso, ha avuto inizio negli anni '60 → biotipo El Tor

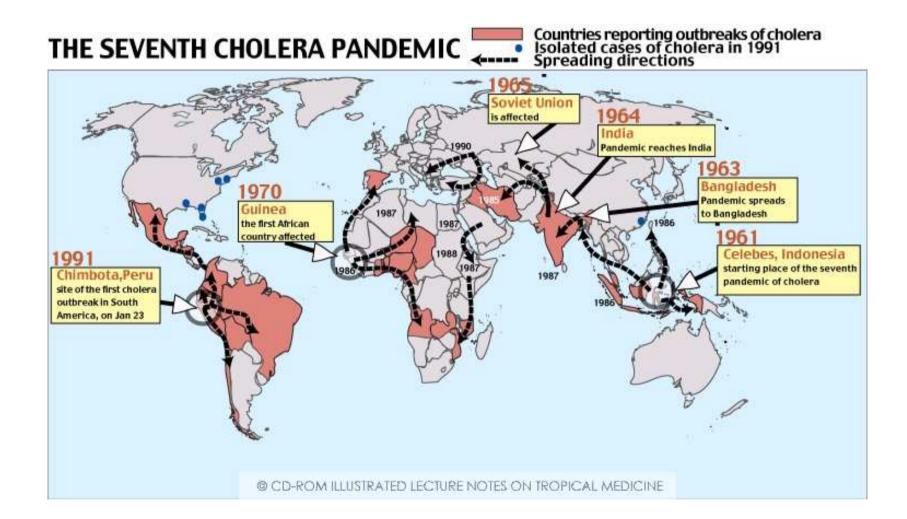

Prima Pandemia 1817 - 1823

Seconda pandemia 1829-1851



Second Cholera Pandemic

Epidemia di colera a Broad Street del 1854


- John Snow deve la sua attuale notorietà per aver studiato la diffusione dell'epidemia di colera del 1854 a Soho ipotizzando la sua diffusione a causa di una pompa di distribuzione dell'acqua.
- Durante la sua ricerca delle cause dell'epidemia, utilizzò una piantina di Londra con la diffusione dei casi nei diversi periodi. Questo metodo gli permise di notare che i casi si concentravano attorno ad una pompa dell'acqua nel distretto di Soho. Bloccando il funzionamento della pompa riuscì a fermare il diffondersi della malattia.
- Snow pubblicò i risultati delle sue ricerche in un'opera (*On the Mode of Communication of Cholera*) che venne fortemente criticata, in particolar modo da *The Lancet*, una rivista medica molto autorevole.
- La pompa venne successivamente rimessa in funzione, non considerando le tesi di Snow valide.

La mappa originale di John Snow che mostra i gruppi dei casi di colera nell'epidemia di Londra del 1854. La pompa è ubicata all'incrocio tra Broad Street e Little Windmill Street, oggi Lexington St

- Snow morì improvvisamente a 45 anni, noto a quel tempo molto più per i suoi lavori concernenti l'anestesia che non per quelli epidemiologici.
- Le ricerche successive dimostrarono che le sue ipotesi sulla trasmissione del colera erano corrette: nel 1883 Robert Koch dimostrò l'ipotesi batteriologica

Settima Pandemia 1961-present

V. cholerae O139: 8^a pandemia?

A partire dal **1992** emerge un nuovo sierogruppo V cholerae O139 Bengala che causa un' ampia epidemia in Bangladesh e in India, si diffonde in tutto il Sud Est asiatico È il primo ceppo non-O1 capace di causare epidemie di colera Potrebbe essere l'inizio della 8° pandemia?

Epidemiolgia

Il colera nel mondo

- Secondo gli ultimi dati OMS, attualmente il colera non solo non arretra, ma è ancora diffuso in 47 nazioni tra le più povere del pianeta.
- la malattia tende a riaffacciarsi anche in zone nelle quali si considerava debellata a seguito di carestie, guerre o fenomeni naturali come terremoti o uragani che possono costringere le popolazioni a servirsi di acqua non trattata.
- Dal 2017 si è registrato un importante focolaio in Yemen con 600 mila casi sospetti e oltre 2.000 morti.
- Nei primi nove mesi del 2018, la malattia ha ucciso 800 persone in Somalia e resta una delle principali cause di morte a Haiti dove, in meno di 7 anni, ha contagiato 1 milione di persone e causato 100 mila vittime.

In Europa 0,01 casi ogni 100 mila abitanti

- Secondo l'Eurostat, in Europa i casi di colera sono diminuiti dopo un picco massimo di 40 contagi avvenuto nel 1998.
- Dal 1995 al 2004 gli episodi riportati sono stati 237, per un'incidenza di 0,01 casi ogni 100 mila abitanti.
- Nel 2005 le infezioni sono state 34 in 20 diversi Paesi.
- Gli ultimi episodi noti risalirebbero al 2011, localizzati in Ucraina, come riporta il bollettino epidemiologico Ecdc.
- Per la precisione, tra il 31 maggio e il 9 giugno 2011, ci furono 14 contagi nella città balneare di Mariupol, nel Donetsk e uno nella vicina Volnovakha. Senza decessi.

Attualmente endemico: nel sub-continente Indiano in molti Paesi dell'Africa sub-sahariana e in America Latina

Cholera outbreak in Haiti 2010- 2011

 una grave epidemia di colera ha colpito Haiti nell'ottobre 2010, sono stati registrati più di 500.000 casi in tutto il paese.

Colera in Zimbabwe

2009: Quasi 100.000 casi conclamati 4200 decessi

2020 Colera in Yemen

- Da quando la guerra è cominciata, nel marzo del 2015, le condizioni di vita della popolazione sono precipitate drammaticamente: 18 milioni di persone sono esposte a rischio di contagio del colera per mancanza di acqua pulita e servizi igienico-sanitari.
- Dopo 5 anni di guerra civile non è rimasto nulla: le città sono distrutte, la popolazione decimata, le fonti d'acqua potabile non esistono più. Solo metà delle strutture sanitarie sono funzionanti.

- oltre 2 milioni di casi sospetti di colera
- e più di 3.700 decessi associati nel paese da ottobre 2016.

Diffusione del colera durante le «emergenze » e i disastri naturali

2010-2011 colera ad Haiti dopo il terremoto (170.000 persone colpite, quasi 4.000 morti)

2016 colera dopo l'uragano Matthew (Haiti, Caraibi, Florida)

Agosto 1973: a Napoli scoppia il colera

Ottobre 1973: l'Organizzazione Mondiale della Sanità dichiara terminata, a tre mesi dallo scoppio, l'emergenza colera a Napoli.

Mario Soscia, direttore del "Cotugno": "La folla dei parenti premeva contro i cancelli per avere notizie dei propri cari in isolamento. Usavamo un megafono per fornire notizie".

file per la vaccinazione di massa

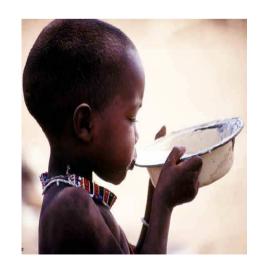
Ottobre 2018 dopo 40 anni

Il ritorno del colera mamma e figlio ricoverati a Napoli

► Erano rientrati dal Bangladesh nel Casertano I medici del Cotugno: non c'è rischio epidemia

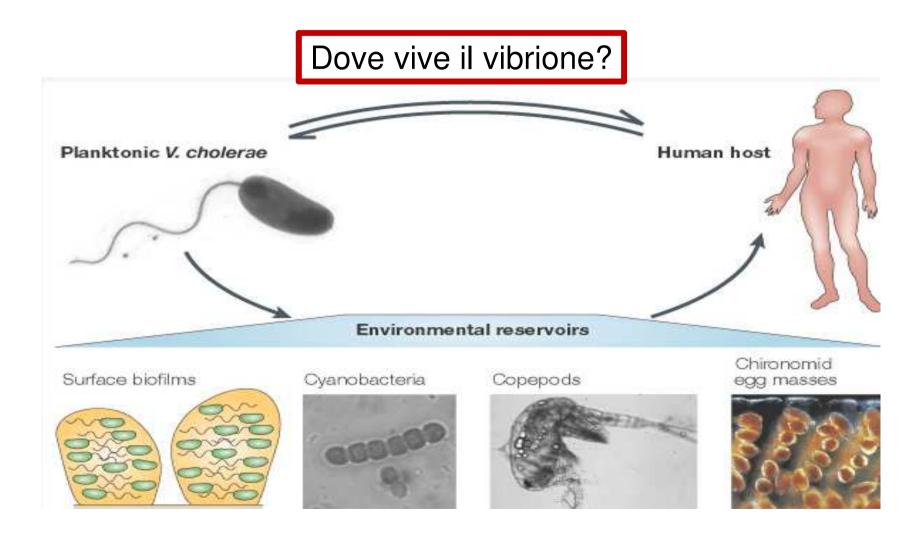
Ettore Mautone

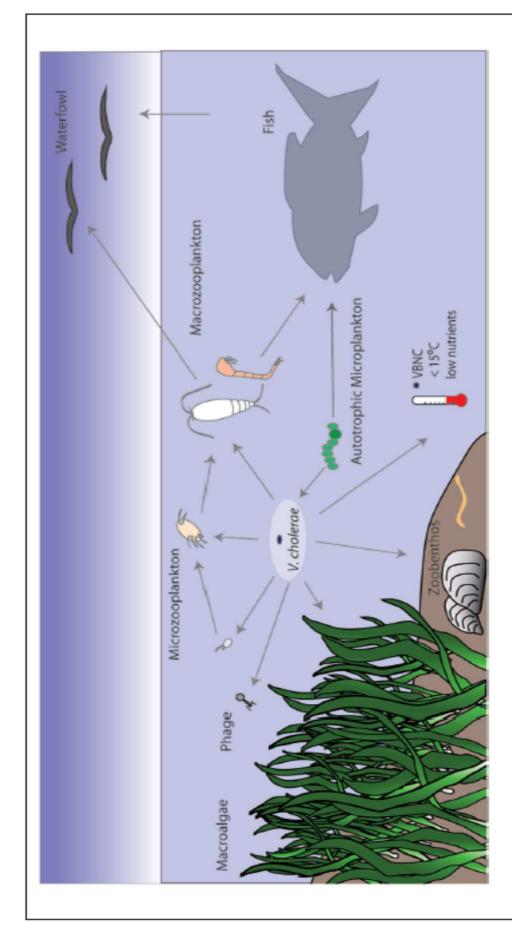
orna il colera in Italia: mamma e figlio di 2 anni, appena rientrati dal Bangladesh dove hanno contratto la malattia. I due, che risiedono nel Casertano, sono ricoverati nell'ospedale Cotugno di Napoli. I medici: nessun rischio contagio. In Cronaca con Rosselli


Acqua contaminata per 2 miliardi di persone

- Il report dell'Oms sottolinea più volte come il colera sia spia della forte diseguaglianza tra ricchi e poverissimi.
- Al mondo, oltre 844 milioni di persone non hanno accesso a un acquedotto, 2 miliardi bevono in pozzi e rigagnoli fognari contaminati da batteri fecali, molto spesso perché le bidonville in cui abitano sorgono proprio nei dintorni degli scoli delle acque reflue delle vicine città.
- Infine quasi 3 miliardi di persone non hanno accesso a strutture sanitarie di base, che potrebbero prontamente e facilmente curare i sintomi diarroici caratteristici della malattia.

Colera 2020


- 94% dei casi totali riscontrati nel Continente Africano. WHO stima che i casi notificati rappresentino in realtà il 5-10% dei casi presenti
- Il colera è strettamente associato a povertà, abitazioni affollate e stato socio-economico basso!
- Il rischio di colera in Italia è generalmente molto basso, fatta eccezione per crostacei o molluschi importati illegalmente e per i viaggiatori in aree dove si è verificata un'epidemia.
- Il rischio di contrarre la malattia per il viaggiatore internazionale è di 0.2 casi/100.000


	casi	morti	%
Africa	179.323	5074	2,83
Nord-America	7	0	
Asia	10.778	69	0,64
Europa	22	0	
Oceania	0		
Total	190.130	5143	2,71

Vibrioni e biofilm

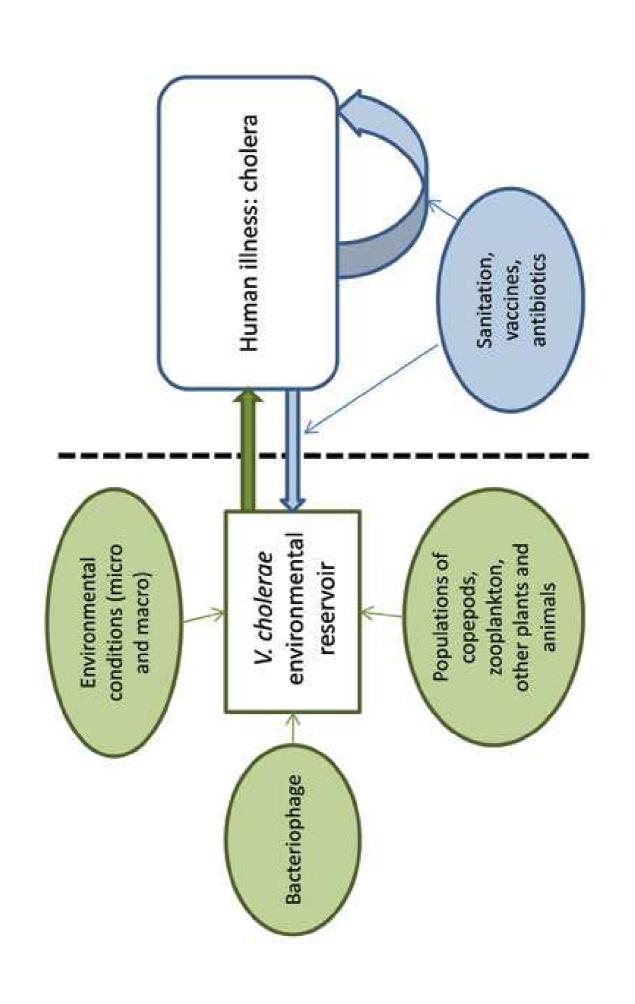
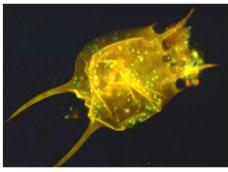

L'evoluzione di *Vibrio cholerae*: dall'ambiente all'uomo

FIGURE 3 | *Vibrio cholerae* interactions with other organisms and the environment. *V. cholerae* is part of the bacterioplankton in aquatic environments. It is under predation pressure by protozoa and bacteriophage and is thus incorporated into the microbial loop. Low temperature and nutrient conditions can trigger the VBNC state, from which it resuscitates under more favorable conditions. *V. cholerae* can


also attach to autotrophic organisms such as phytoplankton or macroalgae, which can provide a carbon source. Attachment to chitinous zooplankton and gelatinous egg masses (e.g., chironomids) provide nutrients and also facilitate HGT. Fish and birds feed on plankton or mussels that might harbor *V. cholerae* and can potentially spread the bacterium across long distances.

«Cholera Paradigm»

- Il colera rappresenta un esempio di come la salute umana sia minacciata dai cambiamenti climatici
- Le epidemie stagionali in Bangladesh si diffondono periodicamente con El Niño
- Il vibrione vive attaccato a piccoli crostacei (biofilm su zooplancton), dove può sopravvivere a lungo, fino a 14 giorni.
- La popolazione dei piccoli crostacei dipende dall'abbondanza del phytoplankton
- Il fitoplancton tende ad aumentare (bloom) quando la temperatura dell'oceano è calda
- Al bloom di fitoplancton segue il bloom di zooplancton e associato l'aumento di Vibrio cholerae

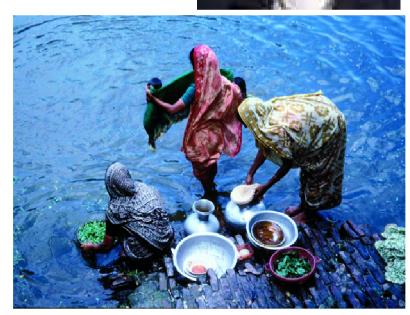
Sari cloth can filter cholera from water, research shows

- A simple method of using readily available sari cloth to filter pond and river water successfully reduced the incidence of cholera by nearly half in a study conducted in Bangladesh.
- In many rural areas of Bangladesh, women use surface water for their household since it may be safer than well water, which can contain arsenic.
- The research team took its cue from a local practice to rid drinking water of insects and leaves by pouring it through sari cloth.
- Lab tests showed that a filter made of four layers of worn cotton material held back more than 99 percent of all cholera bacteria - using more layers or newer cloth slowed water collection too much.

• The filter is unique and useful," said Dr. Rita University of Maryland colleague. "It doesn't require any money or sophisticated training and the women bringing water to the house enthusiastically used the filtration, once the benefit was explained to them."

Research shows that Sari cloth can filter cholera from water

- To test the filter's effectiveness, studied about 45,000 residents, all in households with children under age five, who are typically more vulnerable to cholera.
- E' stato mostrato alle done come usare il sari per filtrare l'acqua che avrebbero usato per lavarsi I denti, peer cucinare e per lavare gli utensili da cucina
- They followed up by visiting the village every two weeks to encourage compliance.
- An additional group of villages served as controls, adopting no interventions.
- In the households that were filtering water, cholera incidence was about half the level of the control participants and infections arising were milder, the scientists reported in Proceedings of the National Academy of Sciences.
- The study also showed the practice **benefited neighbors** who did not filter their water, by reducing the overall incidence of cholera in the community.
- In a follow-up study **five years later**, researchers discovered about one-third of participants continued to filter water as trained.
- It suggested repeated training and messages on TV and the radio could improve usage.



La storia di come un sari può ridurre il colera

Rita Colwell, ha ottenuto una riduzione del 50 per cento dei casi di colera in Bangladesh insegnando a filtrare l'acqua da bere attraverso un pezzo di vecchia stoffa di cotone ripiegato quattro volte può dimezzare i casi di colera.

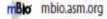
I ricercatori hanno insegnato agli abitanti del villaggio come ripiegare la stoffa, immergerla nell'acqua e lasciarla poi asciugare completamente al sole dopo l'utilizzo.

A simple method of filtering water through sari cloth can reduce cholera incidence by nearly half.

- Un semplice filtro non potrebbe rimuovere dei bacilli di pochi micron, se questi non avessero l'attitudine di aderire a minuscoli crostacei, i copepodi, che vengono trattenuti anche da un filtro improvvisato come nel caso della stoffa.
- Inoltre, le probabilità di contrarre la malattia dipendono fortemente dal numero di batteri ingeriti, il che aumenta l'efficacia di questa grossolana prevenzione.
- Il metodo più sicuro per purificare l'acqua resta ancora la bollitura, ma in Bangladesh la legna è un bene prezioso.
- Dopo alcuni esperimenti, i ricercatori si sono resi conto che i tessuti più vecchi funzionano meglio di quelli nuovi.

Simple Sari Cloth Filtration of Water Is Sustainable and Continues To Protect Villagers from Cholera in Matlab, Bangladesh

Anwar Huq,^a Mohammed Yunus,^b Syed Salahuddin Sohel,^b Abbas Bhuiya,^b Michael Emch,^c Stephen P. Luby,^b Estelle Russek-Cohen,^d*
G. Balakrish Nair,^b* R. Bradley Sack,^e and Rita R. Colwell^{a,e,f}


Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA^a; International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh^a; Department of Geography, University of North Carolina, Chapel Hill, North Carolina, USA^a; Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA^a; Johns Hopkins School of Public Health, Baltimore, Maryland, USA^a; and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA^a

* Present address: Estelle Russek-Cohen, Diagnostics Branch, Division of Biostatistics, Office of Surveillance and Biometrics, U.S. Food and Drug Administration, Rockville, Maryland, USA: G. Balakrish Nair, National Institute of Cholera and Enteric Diseases, P-33, Cit Scheme XM, Bellaghata, Kolkata, India.

ABSTRACT A simple method for filtering water to reduce the incidence of cholera was tested in a field trial in Matlab, Bangladesh, and proved effective. A follow-up study was conducted 5 years later to determine whether the filtration method continued to be employed by villagers and its impact on the incidence of cholera. A total of 7,233 village women collecting water daily for their households in Bangladesh were selected from the same study population of the original field trial for interviewing. Analysis of the data showed that 31% of the women used a filter of which 60% used sari filters for household water. Results showed that sari filtration not only was accepted and sustained by the villagers and benefited them, including their neighbors not filtering water, in reducing the incidence of cholera, the latter being an unexpected benefit.

IMPORTANCE A simple method for filtering pond and river water to reduce the incidence of cholera, field tested in Matlab, Bangladesh, proved effective in reducing the incidence of cholera by 48%. A follow-up study conducted 5 years later showed that 31% of the village women continued to filter water for their households, with both an expected and an unexpected benefit that filtration had both a direct and indirect effect in reducing cholera (chi-square statistic of 1,591.94; P = <0.0001). Results of the study showed that the practice of filtration not only was accepted and sustained by the villagers but also benefited those who filtered their water as well as neighbors not filtering water for household use in reducing the incidence of cholera.

mBio 2010, volume 1 issue 1 e00034-10

Vibrioni e biofilm

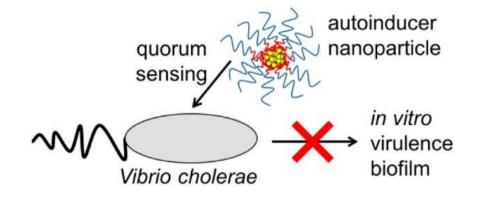
- V. cholerae forma biofilm durante tutte le fasi del suo ciclo di vitale in mare e nell'intestino.
- Ceppi di *V.cholerae* tossigeni e non tossigeni vivono in mare per tutto l'arco dell'anno, sia in stato planctonico sia in stato aggregato in biofilm.
- Questa modalità di crescita protegge da una serie di sollecitazioni ambientali, tra cui la limitazione dei nutrienti, la predazione da parte di eucarioti unicellulari (protozoi) e l'attacco da virus batterici (batteriofagi).
- Anche se V. cholerae può formare biofilm su molte superfici biotiche e abiotiche, diversi studi sul campo hanno dimostrato che V. cholerae preferibilmente forma biofilm sul fitoplancton, sul zooplancton e sulla chitina oceanica.
- Gli esoscheletri del zooplancton contengono chitina, che V. cholerae può utilizzare come sua sola fonte di carbonio.
- La crescita sulla chitina induce anche la competenza naturale e consente alle cellule di acquisire nuovi materiali genetici.
- Come vettori fisici e fonti primarie di sostanze nutritive per il *V. cholerae*, lo zooplancton serve come serbatoi e vettori di colera.

Vibrioni e biofilm e ambiente

- Sebbene il V. cholerae sia trovato per tutto l'anno negli ambienti costieri ed estuari dove il colera è endemico, le epidemie sono stagionali e si correlano con i cambiamenti ambientali
- I bloom fito e bioplanctoni, influenzati dalla temperatura dell'acqua, dalle ore di sole, dalla profondità del mare, dalla pioggia e dalla salinità, sono considerati il principale fattore ambientale che contribuisce ai focolai stagionali.
- Le pratiche di filtraggio semplici che eliminano le particelle superiori a 20 μm sono state dimostrate efficaci in modo significativo per ridurre i casi di colera, il che suggerisce che la rimozione di *V.cholerae* associato a biofilm o a bioplancton dall'ambiente, riduce la trasmissione

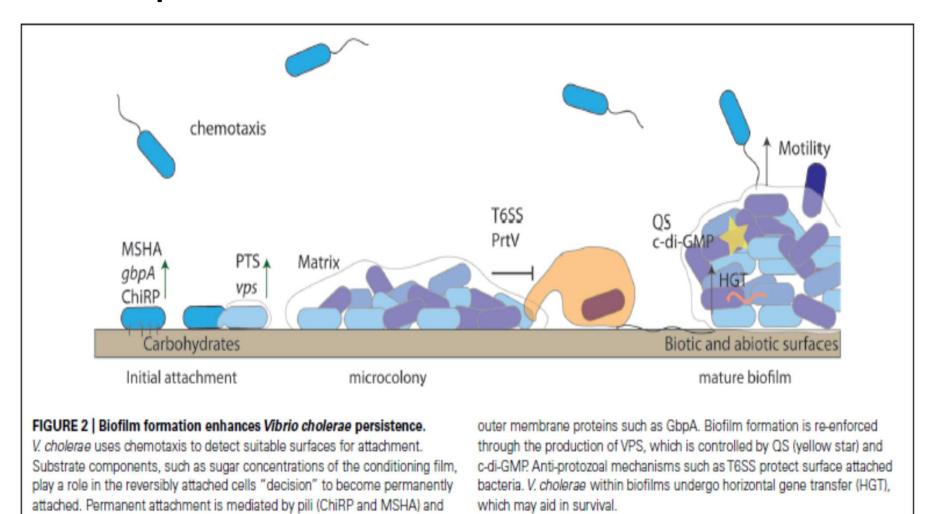
Vibrio cholerae VBNC

- Tra un'epidemia e l'altra, si sono osservate, le cellule di V. cholerae «metabolicamente quiescenti» sia nello stato planctonico sia nei biofilm.
- All'interno di questi biofilm i batteri letteralmente "cambiano abitudini di vita".
- La loro crescita tende a rallentare e i batteri passano alla fase di vita VBNC (Viable But Not Culturable cell) ossia di crescita stazionaria, di cellula viva, ma non vitale. Chiusi in questo stadio di vita, i batteri diventano molto più resistenti agli stress ambientali avversi quali il pH, la carenza di acqua libera, la presenza di soluti.
- Queste cellule sembrano contribuire alla persistenza di V. cholerae.
- Le cellule quiescenti possono perdere la loro forma tipica curva, diventando coccoide e non possono essere coltivate in condizioni di laboratorio standard.


Vibrio cholerae VBNC

- Possono tornare in uno stato attivo in risposta ai segnali prodotti dalle cellule attive presenti nell'ambiente o con il passaggio attraverso un ospite, anche se il meccanismo dell'attivazione host-mediata è ancora sconosciuta.
- I biofilm contenenti V.cholerae in stato VBNC possono avere rilevanza biologica importante, in quanto le loro ridotte esigenze metaboliche e la crescita rallentata possono consentire loro di sopravvivere a condizioni ambientali difficili fino a quando le circostanze non migliorano, con riattivazione delle cellule e malattia!

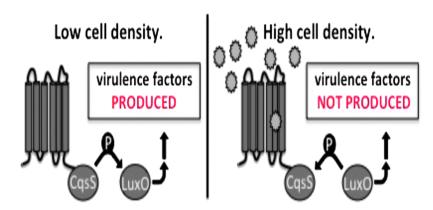
V. cholerae & biofilm &cellule iperinfettanti


- I biofilm di *Vibrio cholerae* contengono concentrazioni più elevate di batteri «iperinfettanti» e quindi hanno un ruolo chiave nella trasmissione.
- La matrice extracellulare auto-prodotta o acquisita che racchiude le cellule del biofilm aumenta la resistenza batterica alle difese dell'ospite.
- Lo stato iperinfettante si riferisce ad una diminuzione del numero di cellule necessarie per causare la malattia.
- In altre parole, la dose infettiva richiesta per l'infezione è minore e il rischio di trasmissione di malattia è aumentato.
- Tuttavia, il ruolo della formazione di biofilm V. cholerae all'interno dell'ospite è poco compreso.
- I biofilm possono formarsi in vivo e successivamente essere eliminati con le feci.

Quorum sensing e *Vibrio cholerae*

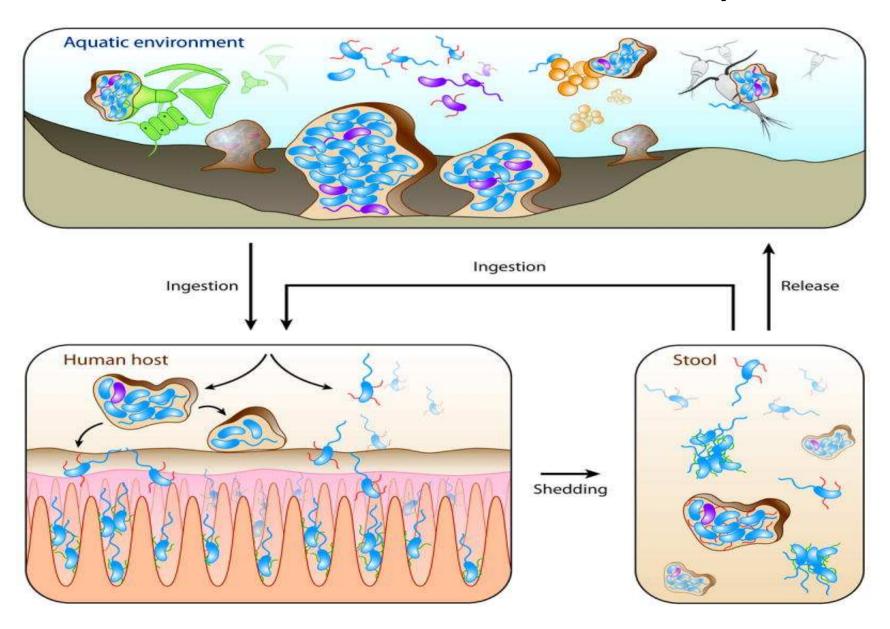
- Nell'ambiente acquatico V. cholerae si trova nella sua forma planctonica altamente mobile e nella forma biofilm su zooplancton, fitoplancton, detriti e altre superfici, come i sedimenti.
- Dopo le fasi iniziali di adesione alle superfici abiotiche e biotiche, che coinvolgono i pili MSHA type IV pili mannose-sensitive haemagglutin, le cellule iniziano a produrre la matrice extracellulare, che è essenziale per ottenere biofilm maturi con una struttura tridimensionale.
- Le epidemie stagionali da *V. cholerae* originano da fonti ambientali.
- Durante la colonizzazione intestinale, V. cholerae produce tossina co-regolata da pili (TCP).
- Sia le cellule in forma planctoniche che aggregata in biofilm si trovano nelle feci del paziente e queste possono reinfettare un nuovo ospite o tornare nell'ambiente acquatico.

La formazione di biofilm aumenta la persistenza di Vibrio cholerae

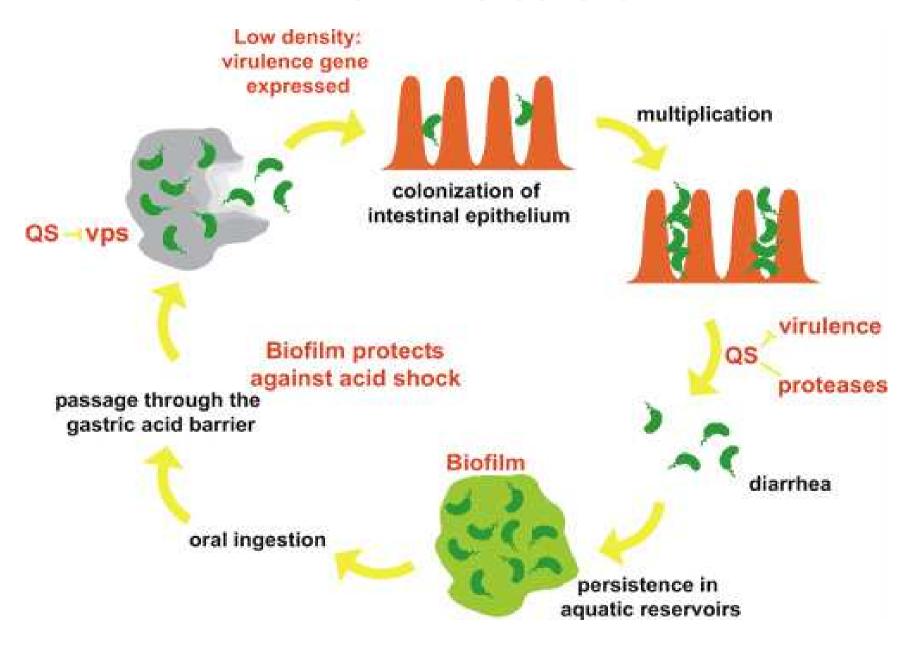


V. cholerae & biofilm &cellule iperinfettanti

- La matrice extracellulare auto-prodotta o acquisita che racchiude le cellule del biofilm aumenta la resistenza batterica alle difese dell'ospite.
- Sebbene il ruolo dei biofilm nella resistenza dell'ospite non sia stato ben chiarito, diversi studi suggeriscono che una componente chiave del biofilm di *V.cholerae* sia rappresentata dalla *vibrio-polisaccaride* (VPS) la principale componente dell'EPS di biofilm di *Vibrio Cholerae* prodotta durante l'infezione dell'ospite.
- La delezione di geni coinvolti nella produzione di VPS e della proteina della matrice extracellulare RbmA ha portato ad un difetto di colonizzazione intestinale nel modello murino sperimentale.
- Complessivamente, questi risultati indicano che i i biofilm giocano un ruolo chiave durante l'infezione da V. cholerae, ma ulteriori studi sono necessari per chiarire i meccanismi e le funzioni in vivo.
- Attualmente, gran parte di quanto conosciamo sulla struttura, funzione e regolazione del biofilm di *V. cholerae* si basa su risultati in vitro.

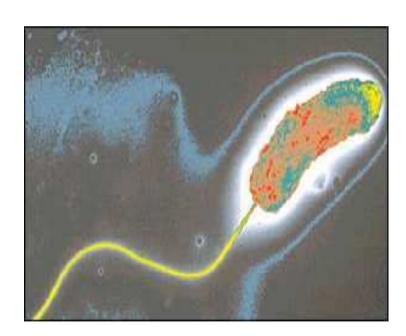

Quorum sensing e Vibrio cholerae

- In Vibrio cholerae la relazione tra quorum sensing e architettura del biofilm è stata meglio compresa.
- Il principale polisaccaride extracellulare espresso nei biofilm formati da questi batteri viene denominato VPS (essendo i geni vps responsabile della sua produzione).
- La produzione di VPS è regolata negativamente da HapR; i mutanti HapR producono colonie rugose e formano biofilm spessi con ristretti canali di acqua.



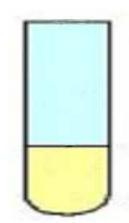
- Il gene HapR codifica un fattore di trascrizione conosciuto, perché inibisce l'espressione di AphA (un regolatore negativo della virulenza) e promuove l'espressione di HapA (il gene strutturale per Hap, una metalloproteina).
- Inoltre, la stessa espressione di HapR è indirettamente repressa da LuxO, un regolatore che risulta più attivo in condizioni di bassa densità cellulare.
- L'attività di LuxO è controllata da altri due segnali di quorum sensing minori, ma solo il lattone CAI-1
 acilomoserina gioca un ruolo significativo nella formazione del biofilm.
- Queste osservazioni suggeriscono che, in condizioni di bassa densità cellulare, i livelli di CAI-1 sono abbastanza bassi da permettere al mediatore LuxO la repressione di HapR, con conseguente produzione di VPS.
- Quindi, questo particolare batterio sembra iniziare la produzione della matrice extracellulare in condizioni di bassa densità cellulare, presumibilmente prima della formazione di una comunità multicellulare.

Biofilms in *V. cholerae* life cycle

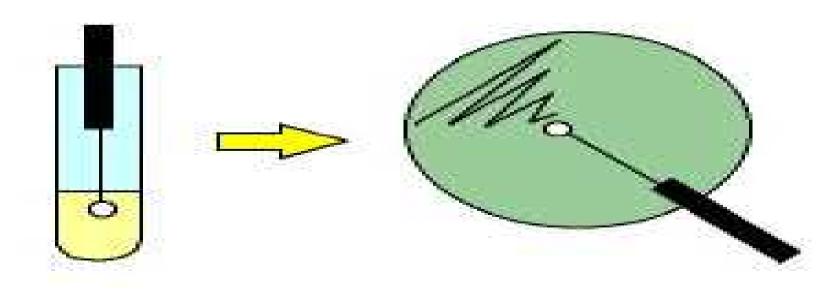

Biofilm e colera

Diagnosi

- Concentrazione vibrione nelle feci: $10^7 10^9$ /ml
- Isolamento su terreni selettivi:
- Acqua peptonata pH 9 → terreni solidi (TCBS) → prove biochimiche, agglutinazione con antisieri specifici
- NB: emocolture sempre negative!


Diagnosi

Brodo di arricchimento:


acqua peptonata alcalina (pH 8-9)

inibizione crescita enterobatteri

incubazione 8-12 ore

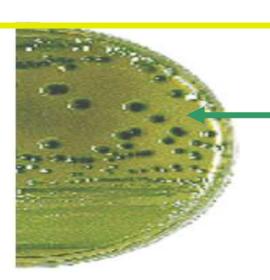
Prelevare dalla superficie e seminare su **Agar TCBS** (Tiosolfato Citrato Bile e Saccarosio)

Diagnosi

TCBS = terreno selettivo

Alcalino = azione batteriostatica su altri batteri (enterobatteri)

Bile = inbisce crescita enterococci


Saccarosio = fermentato da *V. cholerae* (giallo)

non fermentato da altri Vibrio spp

Confermare con test dell'ossidasi (+)

Sieroagglutinazione con anti-O1

Terapia

- Exitus → disidratazione, acidosi, ipokaliemia, shock, insuff.
 renale
- Terapia reidratante:
 - Riduzione letalità da 60% a 0.5%
 - Soluzione sostitutiva equivalente a liquidi persi feci = K⁺ 19, HCO3⁻
 47, Na⁺ 126, Cl⁻ 95 mEq/l
 - "Dacca solution" " 5.4.1" per os o ev
 - NaCl = 5g, NaHCO₃ = 4g, KCl = 1g, in H₂O 1000 ml (\pm amidi-riso in polvere, se per os)
- Terapia antibiotica

Terapia antibiotica

- Serve a ridurre ed eliminare quanto prima i vibrioni → diminuzione tossina prodotta → diminuzione diarrea
- Tetracicline 2 g in dose unica
- Fluorochinoloni (Ciprofloxacina 1 g dose unica)
- Eritromicina (nei bambini)
- CAF Cotrimoxazolo

- La vaccinazione fornisce una immunità limitata e di breve durata tuttavia rappresenta un ulteriore strumento nella prevenzione del colera.
- Sono disponibili due vaccini orali:
- Vaccino con cellule batteriche uccise
 - contiene una miscela di 10¹¹cellule di V cholerae O1 El Tor e Classica uccise al calore e 1 mg di subunità B ricombinante della tossina colerica
 - Stimola una risposta immunitaria sia contro il batterio che contro la tossina
- Svantaggi:
- fornisce una protezione del 85% negli adulti e 50% nei bambini di 2-5 anni per i **primi 6 mesi** (in media 50% di protezione per **3 anni** solo negli adulti)
- necessaria la somministrazione di almeno 2 dosi

- Vaccino con cellule batteriche vive attenuate
- ottenuto dalla manipolazione genetica del ceppo di V. cholerae CVD 103-HgR

– Vantaggi:

- Singola dose
- Stimola una risposta immunitaria già dopo una settimana dalla somministrazione
- conferisce protezione > 80% nei confronti di *V. cholerae* O1 sia biotipo classico che El Tor

– Svantaggi :

- la protezione declina rapidamente dopo 6 mesi, soprattutto nei bambini
- può indurre lievi sintomi della malattia (dolori addominali, diarrea)

- Il vaccino orale è composto da quattro diversi ceppi inattivati di vibrioni colerici 01 e dalla subunità B non tossica ricombinante della tossina colerica.
- Per la maggior parte dei viaggiatori internazionali il rischio di contrarre il colera è basso, se si adottano corrette norme igieniche. Pertanto la vaccinazione è raccomandata solo per viaggiatori particolarmente a rischio, ad esempio lavoratori, operatori sanitari e volontari che si recano in zone colpite da disastri naturali o guerre in aree endemiche o in zone di epidemia.
- La vaccinazione anticolerica può conferire una protezione crociata solo nei confronti di alcune forme di diarrea del viaggiatore, cioè quelle sostenute da Escherichia coli enterotossigeno. Questo si spiega in quanto la tossina di Escherichia coli enterotossigena è strutturalmente, funzionalmente e immunologicamente simile alla tossina colerica: per questo motivo il vaccino anticolerico, indicato per la prevenzione dell'infezione colerica, può conferire protezione nei confronti di queste forme di diarrea del viaggiatore.

La vaccinazione fornisce una **immunità limitata** e di **breve durata** tuttavia rappresenta un ulteriore strumento nella prevenzione del colera.

- Ciclo vaccinale
- Per gli adulti e i bambini di età pari o superiore a 6 anni, sono previste due dosi;
 per i bambini di età compresa tra 2 e 6 anni, sono necessarie tre dosi.
- La confezione di Dukoral contiene due bustine di bicarbonato di sodio e due flaconcini contenenti il vaccino: ogni dose di vaccino anticolerico va preparata versando il contenuto di un flaconcino in una soluzione di acqua (circa 150 ml) e bicarbonato di sodio (1 bustina).
- Se la persona da vaccinare è un bambino di età compresa tra i 2 e 6 anni, si elimina metà della soluzione di acqua e bicarbonato di sodio e in quella che rimane (circa 75 ml) si versa l'intero contenuto di un flaconcino di vaccino.
- La soluzione deve essere bevuta entro 2 ore dalla sua preparazione e lontano dai pasti o dall'assunzione di medicinali (intervallo di almeno 1 ora prima e dopo).
- Le dosi di vaccino (due o tre a seconda dell'età) vanno assunte ad una settimana di intervallo l'unadall'altra; se trascorrono più di sei settimane tra le due dosi, è indispensabile ripristinare l'intervallo corretto tra le due assunzioni. La vaccinazione deve essere completata almeno 1 settimana prima di arrivare in zona endemica.

Risposta anticorpale

- Il vaccino induce la produzione di anticorpi secretori IgA antitossina, a livello intestinale, nel 70-100% delle persone correttamente vaccinate; nel siero si osservano anticorpi vibriocidi nel 35-55% e anticorpi antitossina nel 78-87% dei vaccinati.
- Tempo di comparsa dell'immunità
- Dopo almeno 1 settimana dal completamento del ciclo vaccinale di base.
- Durata dell'immunità
- 2 anni per adulti e bambini a partire dai 6 anni di età che hanno assunto le due dosi del ciclo vaccinale di base; 6 mesi per i bambini tra i 2 e i 6 anni che hanno assunto tre dosi. Nel caso in cui l'ultima somministrazione di vaccino anticolerico risalga a meno di 2 anni prima (per adulti e bambini a partire dai 6 anni di età) o a meno di 6 mesi prima (per i bambini tra i 2 e i 6 anni), sarà necessario somministrare una singola dose di richiamo. Nel caso il tempo trascorso sia superiore a quelli sopraindicati, sarà necessario ripetere il ciclo di base.

DUKORAL

SODIUM HYDROGEN CARBONATE Effervescent granules 5.6 g Oral use.

To be used with DUKORAL.
Read the package leaflet before use. Valneva Sweden AB, Sweden

SV40260B

01/2019

SHSD_IB

Val ^{str}dension. Oral use, set the package leaf

3 ml of suspension in a bottle and 5.6 g of effervescent granules in a sachet. For oral use. Suspension and effervescent granules for oral suspension (inactivated, oral) DUKORAL"

valneva

Profilassi specifica

- È una delle 5 malattie infettive sottoposte a controllo internazionale
- Denuncia; isolamento malati e sospetti; contumacia contatti per 5 gg
- Feci trattate con cloruro di calce
- Convalescenti dimessi dopo 3 coprocolture negative (a 3 gg da sosp. antibiotici e a distanza di 24h)

Profilassi aspecifica

Accurata eliminazione delle feci umane

Purificazione delle acque

Bere acqua bollita o confezionata in bottiglie sigillate, eliminare verdure crude o cibi facilmente contaminati, igiene personale (lavaggio mani)

Inattuabili nei Paesi poveri.

Chokera germs are found in the faceas of infected people. These germs multiply rapidly in water.
 Poor sanitation habits cause cholera to spread.
 Chokera greats when sanitation habits are bed, and people delexate near water sources, or wash inferted babbes' napples in the water.

Add one teaspoon of Jik (or other bleach) to 25 litres of water. Let it stand for two hours before use, but preferably overnight. 00 TO STATE +

2

10

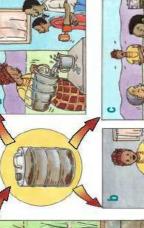
5. Make a home solution for people who have diarrhoea.

SALT

SUGAR

WATER

- Make: a sugar/salt solution for anyone with symptoms of cholera.
 To 1 litre of clean water, add 8 teaspoons of sugar + ½ teaspoon of salt.



Drink only safe water

7. A cholera epidemic.

• People with cholera need urgent medical attention.

e of getting cholera when co d a to give children a drink b, to wash food c. to make beer for the men.

How cholera is spread.
Cholera germs spread in water.
The rain washes the faeces into the water.
The children swimming in the river can get cholera.

CHOLERA

People will not get cholera if their saidion habits are good and hygienic.

• A VIP didet, which is built far from water sources, will not contaminate water.

• Hand washing gets nd of germs.

• Water that is cleaned with Jik, or boiled, kills cholera germs.

Prevent Cholera.
Dispose of human faeces
far away from water sources.

11. Prevent Cholera.

Mash hards

a dite defecating

before preparing or eating food

after charging a baby's nappy.

Bayer of

VIBRIO spp. INFECTIONS

For the Prime, visit doi:10.1036/s41572-015-0005-8

DIAGNOSIS

PATHOPH YSIOLOGY

that can spread via person-to-person transmission mechanisms of gastroenteritis caused by vibriosis diarrhoea, Ofnote, V. cholerae is the only species and electrolytes from enterocytes that results in virulence factors, including cholera toxin, which prompts an intense secretory response of water through the faecal-oral route. By contrast, the are not completely understood, Individuals In the small intestine, V. cholerae produces with liver disease are more susceptible to V. vulnificus infection.

V. parahaemolyticus

strains have Pandemic

expandedoutside of Asia since the

highest case fatality roodborne pathogen and ~25% of wound rate (~50%) of any infections are fatal V. vulnificus has the

the geographical spread temperatures favour and proliferation of rising sea surface Global climate Vibrio spp.

pandemic began recent cholera in the 1960s and is ongoing

The most

effective in preventing and managing outbreaks. disease avereness and improving food safety in Oral cholera vaccines (OCVs) are available and The risk of vibriosis can be reduced by raising particular seafood processing.

environmental factors that favour potentially predict increased risk source and spread of outbreaks will help understanding of the Vibrio spp. growth, which can and understanding of the ofinfections.

> water and sanitation, particularly in areas affected by war, poverty surveillance systems to track the epidemiology of these pathogen:

or natural disasters, Improved

aquatic reservoirs with Vibrio spp. pathogens. Thus, these infections

events and contamination of

are expected to increase, owing

limited access to safe drinking

seasonal and primarily driven by increased temperature, rainfall Most Vibrio spp. infections are

OUTLOOK

to global climate change and

MANAGEMENT

 $\mathbf{\hat{r}}$

doc10.1038/s41572-018-0010-y; published online 17July 2018; Article citation ID: (2018) 4:7

Withen by Lucia Brunelia; designed by Laura Marshall

Marzo 1837 Giacomo Leopardi è a Napoli e scrive al padre: " io grazie a Dio sono salvo dal colera, ma a gran costo.

Dopo aver passato in campagna più mesi tra incredibili agonie, correndo ciascun giorno seri pericoli di vita ben contati, imminenti e realizzabili di ora in ora......il colera oltre che è attualmente in vigore in altre parti del Regno, non è mai cessato neppure a Napoli, essendovi ogni giorno o quasi, dei casi che il governo cerca di nascondere.

Anzi in questi ultimi giorni tali casi paiono moltiplicati e più e più medici predicono il ritorno del contagio in primavera o in estate, ritorno che anche a me pare assai naturale perchè la malattia non ha avuto sfogo ordinario forse a causa della stagione fredda..."

Leopardi morirà il 14 giugno 1837 di colera e verrà sepolto in una fossa comune.